846 | 3 | 2 |
下载次数 | 被引频次 | 阅读次数 |
从中医诊断过程入手,对中医辨证诊断的“非标准化”现象进行剖析,提出中医通过望、闻、问、切四诊采集的症状体征信息天然地存在一定模糊性,这种模糊性可以通过对大量、多维临床数据的分析比对和综合凝练(四诊合参)得以消减,从而实现中医从模糊性四诊数据到精确性诊断结论的升华。基于上述假设,进一步提出中医辨证智能化的研究思路,即以中医师临床思维能力为核心,借助以知识图谱可视化技术为基础的人工智能技术,融合以病机为纽带的“症状-病机-证候”复杂网络关联和推理方法,通过对大量、多维、模糊性临床数据的自动分析和推理过程,从而实现中医辨证诊断的智能化。
Abstract:This paper analyzed the "non-standardization" phenomenon of syndrome differentiation in traditional Chinese medicine(TCM) from the diagnosis process. It is proposed that the symptoms and signs collected by the four examinations of inspection, listening/smelling, inquiry, and palpation naturally have a certain "ambiguity", which can be reduced by the comparison and comprehensive condensation(comprehensive analysis of the four examinations) of a large amount of multi-dimensional clinical data, thereby realizing the sublimation of TCM diagnosis from "ambiguity" of four examinations to "accuracy" of diagnostic conclusion. Based on the above assumptions, this paper further proposed a research idea of intelligent syndrome differentiation in TCM, that is, by taking the clinical thinking ability of TCM physicians as the core, adopting artificial intelligence technology based on knowledge graph visualization, integrating the complex network association and reasoning method of "symptom-pathogenesis-syndrome" linked by pathogenesis, and through the automatic analysis and reasoning process of a large amount of multi-dimensional and ambiguous clinical data, the intelligent TCM diagnosis based on syndrome differentiation can be realized.
[1]田贵华,商洪才.智能中医学概论[M].北京:人民卫生出版社,2021.
[2]李新龙.中医智能诊疗研究中的数据标准化瓶颈和处理策略[J].中华中医药杂志,2024, 39(3):1123-1126.
[3]朱文锋.中医诊断学[EB/OL].(2020-10-01)[2023-11-29]. https://www. ximalaya. com/album/42484196.
[4]傅延龄,刘渡舟.抓主症方法的认识与运用[J].中国医药学报,1993, 8(4):43-44.
[5]李新龙,刘岩,何丽云,等.知识图谱研究概况及其在中医药领域的应用[J].中国中医药信息杂志,2017,24(7):129-132.
[6]何丽云,李新龙,刘岩,等.中医师辨证论治知识图谱构建的思路与方法[J].中医杂志,2017, 58(19):1650-1653.
[7]王昊奋,漆桂林,陈华钧.知识图谱:方法、实践与应用[M].北京:电子工业出版社,2019.
[8]张吉祥,张祥森,武长旭,等.知识图谱构建技术综述[J].计算机工程,2022,48(3):23-37.
[9]NICKEL M, MURPHY K, TRESP V, et al. A review of relational machine learning for knowledge graphs[J]. Proc IEEE, 2016, 104(1):11-33.
[10]PING P, WATSON K, HAN J, et al. Individualized knowledge graph:a viable informatics path to precision medicine[J]. Circ Res, 2017, 120(7):1078-1080.
基本信息:
DOI:10.13288/j.11-2166/r.2024.15.006
中图分类号:TP18;R241
引用信息:
[1]李新龙,王世华,赵欣然等.从“模糊性与精确性”探讨中医辨证诊断的智能化思路[J].中医杂志,2024,65(15):1555-1558+1564.DOI:10.13288/j.11-2166/r.2024.15.006.
基金信息:
国家自然科学基金(82305058); 中央高校基本科研业务费专项资金项目(2024-JYB-JBZD-044); 北京中医药大学东直门医院青年后备人才计划项目(DZMG-QNHB0007);北京中医药大学东直门医院科技创新专项(DZMKJCX-2024-010)